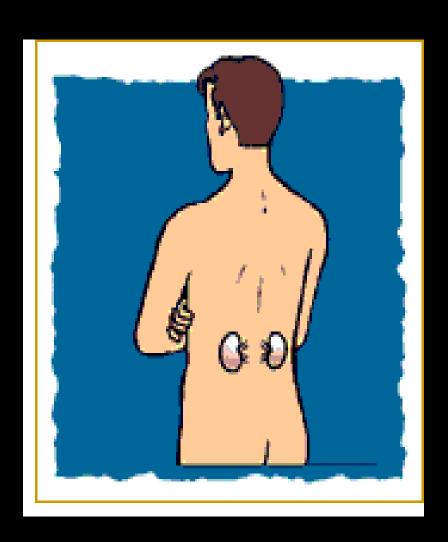


Percorsi del Valdinoto 2017

il bambino con nefropatia tra prevenzione e progressione del danno renale

Carmelo Fede


UO di Nefrologia e Reumatologia Pediatrica con Dialisi

Dipartimento Materno-Infantile

l reni

Dimensioni: cm 10x6x4

Peso: 300 gr. (1/200 p.c.)

Filtrato: 200 lt/die d'acqua

Riassorbimento: 99.9%/die

Regola generale per la formazione delle urine

Escrezione di urine diluite

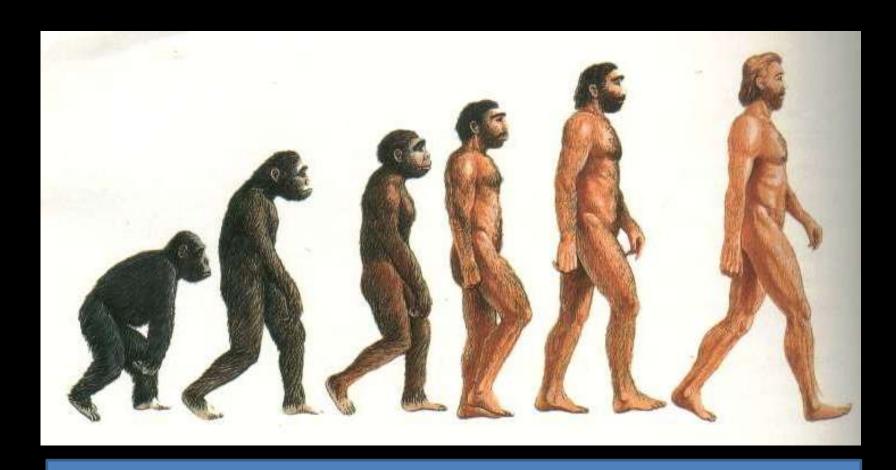
Min=50mOsm/l Fino a 20 l/die

Riassorbimento di soluti dalla parte distale del nefrone senza riassorbimento di acqua

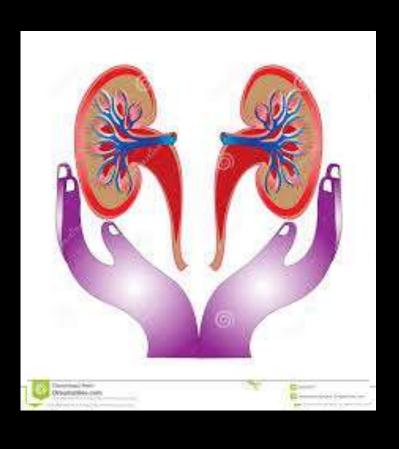
Escrezione di urine concentrate

Max=1200mOsm/l Non meno di 0.5l/die

- ✓ Elevati livelli plasmatici di ADH
- Formazione di un gradiente midollare per formare un gradiente osmotico necessario al riassorbimento di acqua in presenza di elevati livelli di ADH


N.B.: La capacità di modificare il volume di acqua escreto indipendentemente dall'escrezione di soluti è fondamentale.

200 milioni di anni fa

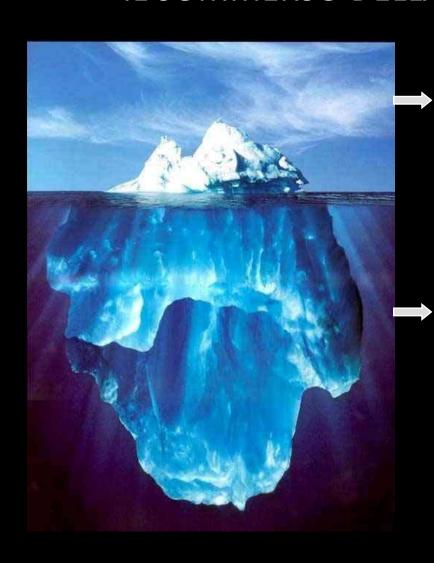

La capacità di concentrare e diluire le urine ha avuto inizio quando gli organismi si sono trasferiti dal mare alla terra ferma ed hanno dovuto quindi risparmiare acqua

20.000 anni fa

L'essere umano come noi lo conosciamo è comparso sulla terraferma circa 20.000 anni fa, dopo una evoluzione durata 5-6 milioni di anni epoca di comparsa dello Scimpanzè

FUNZIONI DEL RENE

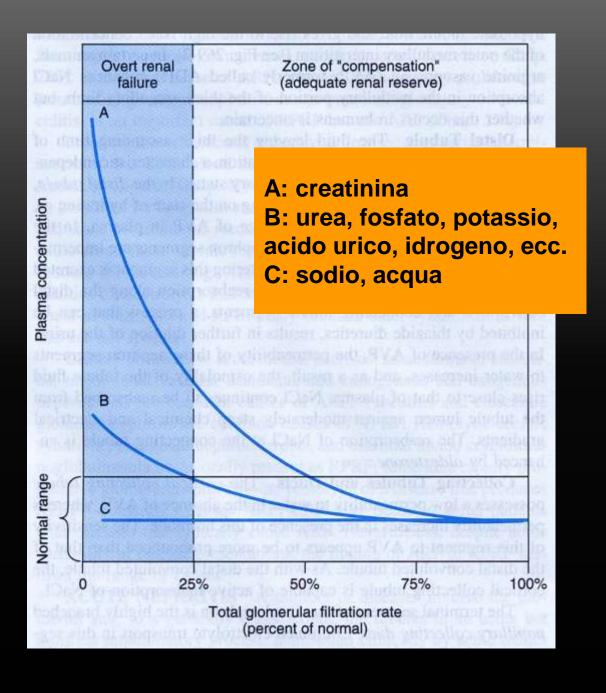
- ° Rimozione prodotti di scarto
- ° Rimozioni dei fluidi in eccesso
- °Omeostasi idro-elettrolitica
- °Controllo Pressione Arteriosa
- °Produzione globuli rossi
- °Mantenimento ossa sane


Epidemia di malattia renale cronica (CKD)

World Health Organization

IL SOMMERSO DELLA MALATTIA RENALE CRONICA

Pz con MRC conosciuta

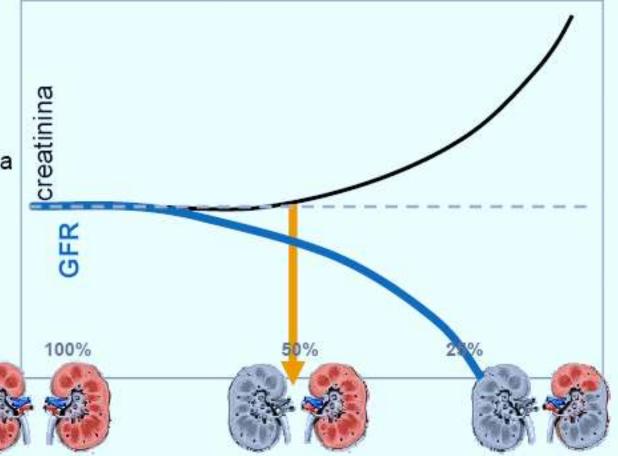

Possibilità di agire sui fattori modificabili della progressione del danno renale e sulla comparsa della co-morbilità

Pz con MRC sconosciuta

Accelerazione della progressione del danno renale, maggiore incidenza e gravità di co-morbilità

Malattia renale cronica

Sto	adio	GFR	Conseguenze metabolico-cliniche
1	Danno renale con GFR normale o ↑	> 90	Alterazioni legate alla malattia di base
2	Danno renale con GFR lievemente↓	60-89	Aumento del paratormone
3	Moderata↓ GFR	30-59	Alterazioni calcio- fosforo,rduzione della poproteinlipasi,ipertro fia ventricolare sx, anemia
4	Severa ↓ GFR	15-29	Aumento lipemia, acidosi,iperkaliemia
5	Pre-uremia/ Uremia	<15 o Dialisi	Iperazotemia



Meccanismi di adattamento alla riduzione della funzione renale

- La misura della concentrazione di un solo soluto non può descrivere la funzionalità renale:
- La velocità di filtrazione glomerulare (Glomerular Filtration Rate, GFR) è considerata l'indice migliore, sia nei soggetti malati che nei sani

Variabilità di

- Flusso urinario
- Massa corporea
- Concentrazione ematica

Valutazione della Filtrazione Glomerulare

•Tecniche infusionali (inulina o Cr⁵¹-EDTA)

gold standard, ma invasiva e laboriosa

• cretU x (iuresi /).440

creatS

1,73

Sup.corporea

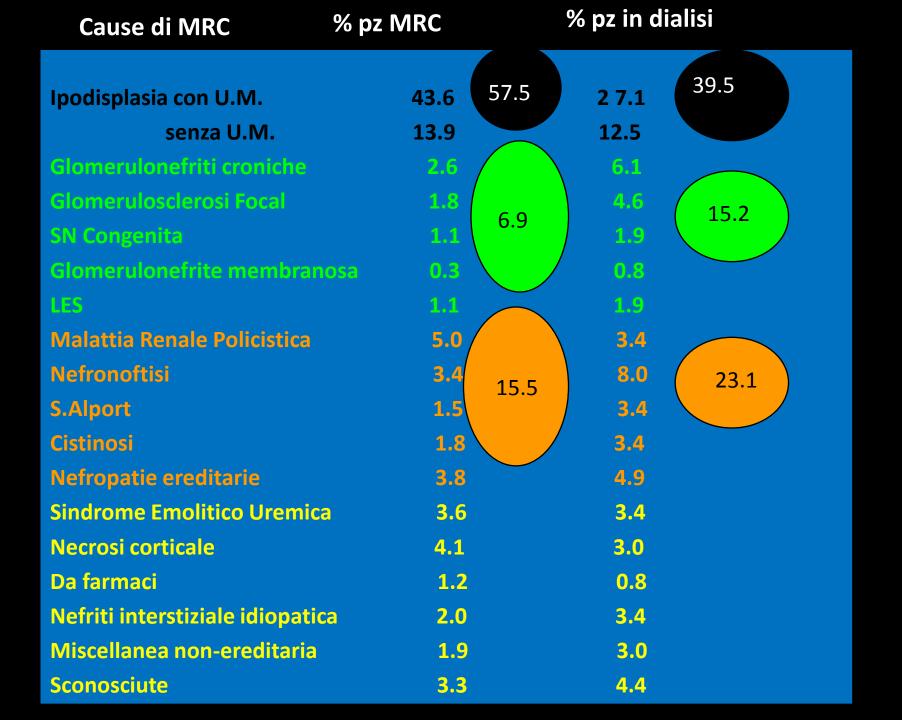
• Formula di Schwartz: lungh (cm) x K /CreatS

K= 0,4 prematuri

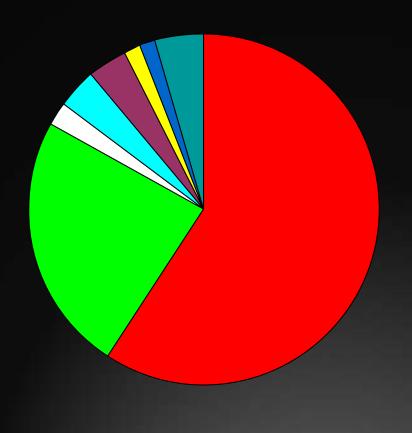
0,45 nati a termine < 1a

0,5 >1a <2aa

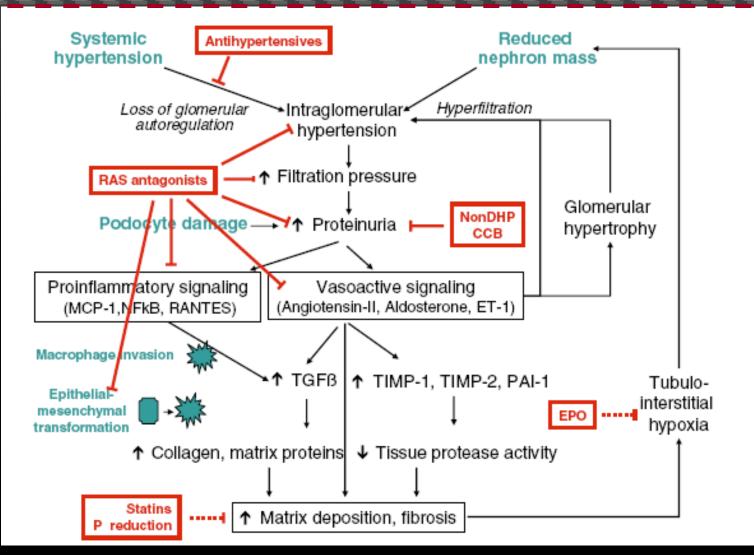
0,55 >2aa <13aa



Incidenza Malattia Renale Cronica in Pediatria


96 Casi / 1.000.000 bambini/anno VFG< 90 ml/min/1.73mg

Acta Paediatr. 2008

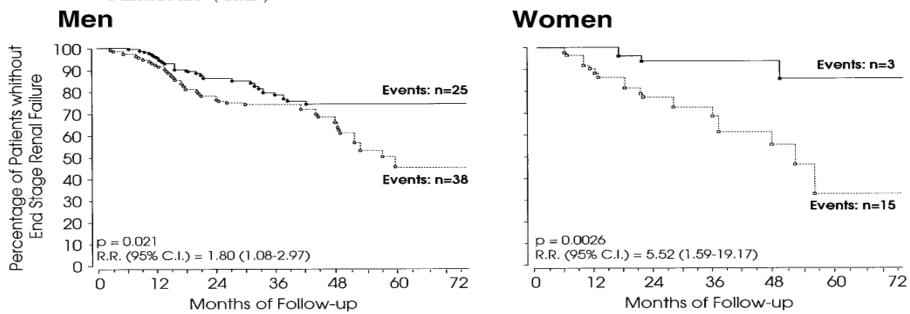
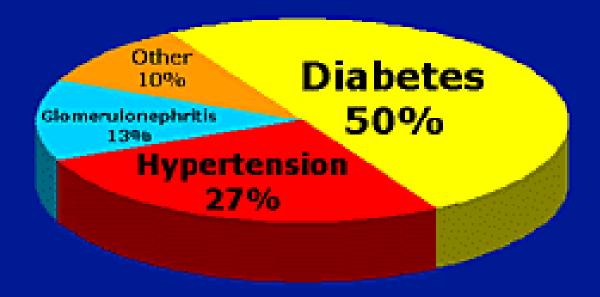

Malformazioni urinarie associate ad ipodisplasia in bambini in MRC

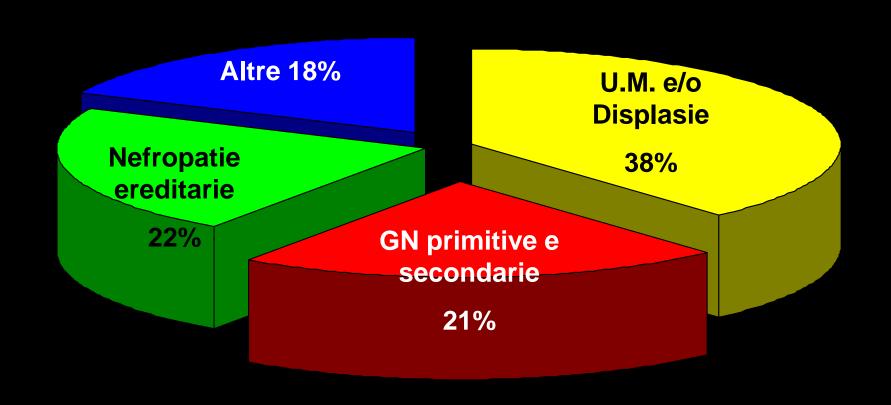
- Reflusso Vescico-Ureterale
- Valvole Uretra Posteriore
- **Ipo/atresia uretrale**
- **■** Stenosi giuntale
- Megauretere ostruttivo
- Ureterocele
- Duplicazioni vie urinarie

Quali possibili trattamenti possono rallentare i meccanismi di progressione del danno verso l'insufficienza renale cronica

Chronic Proteinuric Nephropathies. II. Outcomes and Response to Treatment in a Prospective Cohort of 352 Patients: Differences Between Women and Men in Relation to the ACE Gene Polymorphism

PIERO RUGGENENTI,*† ANNALISA PERNA,* CARMINE ZOCCALI,[‡] GIULIA GHERARDI,* ROBERTO BENINI,* ALESSANDRA TESTA,[‡] and GIUSEPPE REMUZZI,*† for the "Gruppo Italiano di Studi Epidemiologici in Nefrologia" (Gisen)^a


Figure 2. Kidney survival and number of patients on ramipril treatment (black dots) or conventional treatment (white dots) who progressed to ESRD (events) according to gender.

Primary Diagnoses for Patients Who Start Dialysis

Diagnosi primitiva di pazienti pediatrici in dialisi (Registro Italiano di Dialisi Pediatrica)

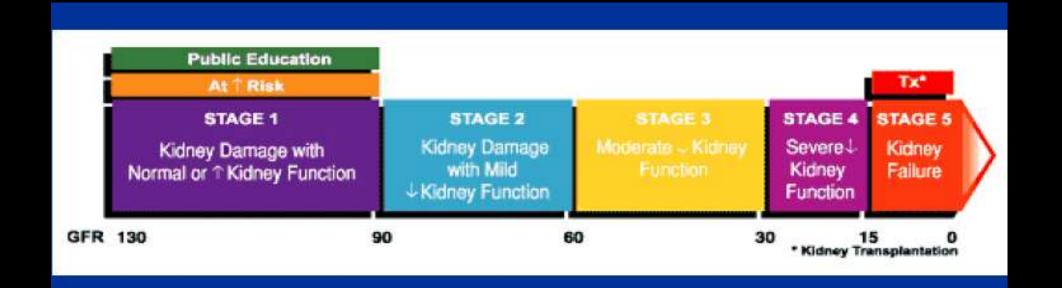
Original Article

No clear evidence of ACEi efficacy on the progression of chronic kidney disease in children with hypodysplastic nephropathy—report from the ItalKid Project database

Gianluigi Ardissino¹, Sara Viganò¹, Sara Testa¹, Valeria Daccò¹, Fabio Paglialonga¹, Antonio Leoni¹, Mirco Belingheri¹, Luigi Avolio², Antonio Ciofani³ Aldo Claris-Appiani¹, Daniele Cusi¹, Alberto Edefonti¹, Anita Ammenti⁴, Milva Cecconi Carmelo Fede⁶, Duciana Ghio¹, Angela La Manna⁷, Silvio Maringhini⁸, Teresa Papalia⁹, Ivana Pela ¹⁰, Lorena Pisanello¹¹ and Ilse Maria Ratsch¹² on behalf of the ItalKid Project

Table 2. Distribution of patients treated with ACEi and controls by progression rate during follow-up

	Cases	Controls	
Fast progressors (%) Slow progressors (%) Non-progressors (%)	22 54 24	28 48 24	$\chi^2 = 0.581$ P = 0.75


Progression classes based on Ccr slopes over time:

Fast progressors: $< -3 \text{ ml/min}/1.73 \text{ m}^2/\text{year}$,

Slow progressors: between -3 and -0.01 ml/min/1.73 m²/year

Non-progressors: $\geq -0.0 \,\text{ml/min}/1.73 \,\text{m}^2/\text{year}$.

Stadi di MRC (secondo K-DOQI)

SEGNI CLINICI DI SOSPETTO DI MALATTIA RENALE IN PEDIATRIA

Neonati e 1° - 2° anno di vita:
Anoressia, vomito, scarso accrescimento
Disidratazione ed acidosi metabolica

A qualsiasi età: scarso accrescimento

Fattori di rischio per malattia renale: arteria singola ombelicale, malformazione genitali esterni, ano imperforato, malformazioni padiglioni auricolari, megacolon aganglionare, difetti cardiaci congeniti, assenza di muscolatura della parete addominale etc.

GLI STRUMENTI COMUNI PER LA DIAGNOSTICA NEFROLOGICA IN PEDIATRIA

Esame delle urine
Azotemia, creatininemia
Clerance della creatinina
Test di funzionalità tubulare
Imaging:

Ecografia
Scintigrafia con ^{99m}Tc-DMSA
Cistouretrografia minzionale
Biopsia renale

Uroscopia: ieri

Uroscopia: oggi

Quale urina?

A) Non la prima minzione del mattino (la stasi notturna in vescica può far scomparire cilindri o alterare cellule)

B) Urine emesse da meno di 2 ore (per evitare che batteri contaminanti assumano l'eventuale glucosio e, fermentando, alterino il pH)

Modificazioni urinarie dopo emissione

	1 h	2 h	5 h	24 h
рН	1	Î	11	111
Urea(trasf NH3)	10%	20%	35%	60%
Ac. Urico	1	1	1	1 1
Batteri	1	Î	11	1111
Emazie	-	1	11	111
Leucociti	1	1	11	1111
Cilindri	-	1	1 1	111
Cristalli	1	1	11	111
(1) Urine di P.S. > 1.015 conservate a + $20^{\circ}C$				

VALUTAZIONE DELLA FUNZIONE RENALE ESAME DELLE URINE

Urine raccolte al mattino, a riposo; analisi a fresco

Colore

Concentrazione osmotica o PS

pH

Proteinuria, glicosuria, ematuria, emoglobinuria etc.

Glicosuria, chetonuria

Esame microscopico

Come?

Mani pulite
Lavare i genitali
Asciugare con panno pulito
Prelievo metà getto

Arch.Dis.Child 2013

A new technique for fast and safe collection of urine in newborns

María Luisa Herreros Fernández, Noelia González Merino, Alfredo Tagarro García, Beatriz Pérez Seoane, María de la Serna Martínez, María Teresa Contreras Abad, Araceli García-Pose

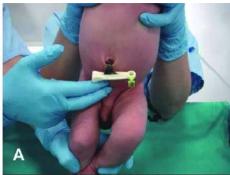
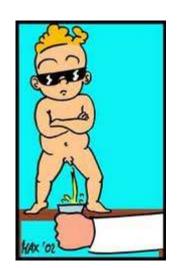


Figure 1 New stimulation technique to obtain midstream urine in newborns. (A) Tapping in the suprapubic area. (B) Stimulation of the ower back. (C) Midstream urine sample collection in a sterile container.



- raccolta con sacchetto
- mitto medio
- puntura soprapubica
- cateterismo

Sensibilità e Specificità dei test urinari

TEST	SENSIBILITA' % (range)	SPECIFICITA' % (range)
Esterasi leucocitaria	83 (67–94)	78 (64–92)
Nitriti	53 (15–82)	98 (90–100)
Esterasi o Nitriti pos	93 (90–100)	72 (58–91)
Microscopia: GB	73 (32–100)	81 (45–98)
Microscopia: batteri	81 (16–99)	83 (11–100)
Esterasi o Nitriti o Microscopia positivi	99.8 (99–100)	70 (60–92)

Esterasi leucocitaria = aspecifico

Ntriti POSITIVO = buona probabilità Nitriti + esterasi leucocitaria POSITIVI = alta probabilità IVU

Microscopia neg o esterasi leuc e nitriti neg : non esclude l'IVU

Il colore delle urine

Colore rosso:

- Febbre elevata
- -Ematuria
- -Mioglobinuria
- -Emoglobinuria
- -Porfirinuria
- -Emosiderinuria
- -Presenza di coloranti
- -(alimentari, farmaci)

Colore giallo intenso

- Urobilina
- Bilirubina
- Farmaci
- Presenza di coloranti

- Colore blu:

- Coloranti (blu di metilene)

Colore brunoscuro, tendente al nero:

- Emoglobina
- Alcaptone
- Melanina
- Levodopa
- Porfirina

□ Colore verde:

- Bilirubina
- Sulfamidici
- Indometacina
- Amitriptilina

Pannolino rosso → IVU da Serratia

Pannolino roseo → Scarica di urati

Pannolino Blu → Ipercalcemia familiare

Non tutto ciò che è rosso è sangue

PSEUDOEMATURIA

urine rosse, assenza di GR all'esame urine

DD Ematuria

	Ematuria	Hb-u	MHb-u	Pigm-u
OSSERVAZIONE (urine rosse)	+	+	+	+
STICK URINE (Eme)	+	+	+	_
ES URINE al MO / SEDIMENTO (GR)	+	_	_	_

Nefrologia e Reumatologia Pediatrica Università di Messina

Ematuria

• Glomerulare: > 80 % G.R. dismorfici, e/o acantociti > 4%

• Post-glomerulare: 80% G.R. isomorfici

Nefrologia e Reumatologia Pediatrica Università di Messina

pH urinario

- Cause di urine acide:
 - Dieta iperproteica
 - Intensa attività sportiva
 - Iperpiressia
 - Digiuno
 - Ingestione di more o mirtilli
 - Acidosi respiratoria
 - Acidosi metabolica
 - Alcalosi ipopotassiemica
 - Ipercorticosurrenalismo
 - Tubercolosi renale
 - Fenilchetonuria
 - Alcaptonuria
 - Farmaci (metionina, cloruro d'ammonio)

□ Cause di urine alcaline:

- Dieta ricca di vegetali e frutta
- Infezioni delle vie urinarie
- Alcalosi metabolica
- Acidosi tubulare
- Iperaldosteronismo primitivo
- Morbo di Cushing
- Farmaci (bicarbonati, citrati, acetazolamide)

TUBULOPATIE ACIDOSI TUBULARI

ACIDOSI METABOLICA IPERCLOREMICA CRONICA

ma

ANION GAP: NORMALE!

ricordare

 $(Na^+ + K^+) - (Cl^- + HCO3^-) = 12 mEq / L$

ACIDOSI TUBULARE (tipo II) PROSSIMALE

ACIDOSI METABOLICA MODERATA

ANION GAP NORMALE

pH URINARIO < 5.5

ACIDOSI TUBULARE (tipo I) DISTALE

DEFICIT DI SECREZIONE DI H+

BICARBONATURIA

ACIDOSI TUBULARE (tipo I) DISTALE

ACIDOSI METABOLICA SEVERA

IPOKALEMIA

ANION GAP NORMALE

pH URINARIO > 6 IPERCALCIURIA

Modificazioni della densità urinaria

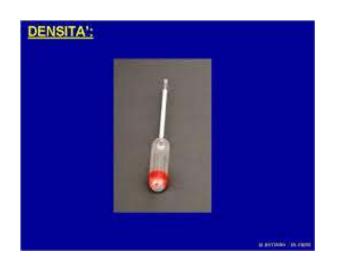
AUMENTO (IPERSTENURIA)

Con Poliuria:

- Glicosuria
- Amiloidosi renale

Con Oliguria:

- Disidratazione
- Glomerulonefrite acuta
- DIMINUIZIONE (IPOSTENURIA)


Con Poliuria:

- Iperidratazione
- Ripresa funzione tubulare dopo IRA
- Nefrite interstiziale
- Nefronoftisi
- Ipercalcemia con ipercalciuria

Con Oliguria:

Digiuno

- MANCANZA DI OSCILLAZIONI FISIOLOGICHE/DIE (ISOSTENURIA)
 - Pielonefrite
 - □ IRC
 - Intossicazione da Piombo

POLIURIA

emissione eccessiva di urine in un tempo stabilito:

- ➤ Adulti >2 L/mq/24 ore
- ➤bambini > 40 ml/Kg/24h
- \gt lattanti 0-2 anni \gt 100 ml/Kg/24h

"pollachiuria": emissione frequente di una quantità totale normale di urina

La poliuria si associa spesso a polidipsia e nicturia, mentre la pollachiuria no

Quando sospettare poliuria/polidipsia nei bambini più piccoli

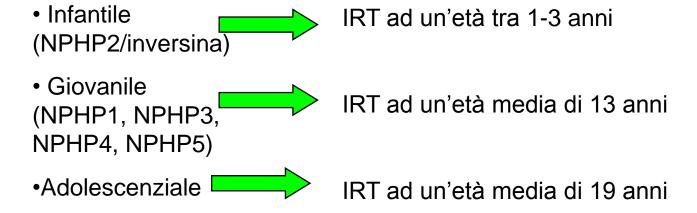
Nicturia

NEFRONOFTISI – CLINICA

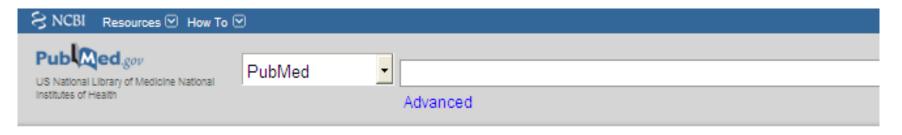
Sintomi di esordio (presenti >80% dei casi)

Iniziano mediamente intorno ai 6 anni

- poliuria
- polidipsia
- ridotta concentrazione delle urine
- · enuresi secondaria


Successivamente

- anemia
- · ritardo di crescita


A causa dei modesti sintomi e la mancanza di edema, ipertensione o IVU, c'è spesso un ritardo nella diagnosi

NEFRONOFTISI

- rappresenta la più frequente causa genetica di insufficienza renale terminale (IRT) nei primi 30 anni di vita
- incidenza: 1/50mila nati vivi
- trasmessa in maniera autosomica recessiva
- 6 geni NPHP1 (crom 2), NPHP2 (crom 9), NPHP3 (crom 3),
 NPHP4 (crom 1), NHPH5 (crom 3), NHPH6 (crom 12)
- 3 forme cliniche:

• Se non si sviluppa IRT entro l'età di 25 aa ipotesi di Malattia Cistica Midollare Renale

Send to:

✓

Nat Genet. 2010 Jul;42(7):619-25. doi: 10.1038/ng.594. Epub 2010 May 30.

Mutations in TMEM216 perturb ciliogenesis and cause Joubert, Meckel and related syndromes.

Valente EM1, Logan CV, Mougou-Zerelli S, Lee JH, Silhavy JL, Brancati F, Iannicelli M, Travaqlini L, Romani S, Illi B, Adams M, Szymanska K, Mazzotta A, Lee JE, Tolentino JC, Swistun D, Salpietro CD, Fede C, Gabriel S, Russ C, Cibulskis K, Sougnez C, Hildebrandt F, Otto EA, Held S, Diplas BH, Davis EE, Mikula M, Strom CM, Ben-Zeev B, Lev D, Sagie TL, Michelson M, Yaron Y, Krause A, Boltshauser E, Elkhartoufi N, Roume J, Shalev S, Munnich A, Saunier S, Inglehearn C, Saad A, Alkindy A, Thomas S, Vekemans M, Dallapiccola B, Katsanis N, Johnson CA, Attié-Bitach T, Gleeson JG.

Author information

Abstract

Joubert syndrome (JBTS), related disorders (JSRDs) and Meckel syndrome (MKS) are ciliopathies. We now report that MKS2 and CORS2 (JBTS2) loci are allelic and caused by mutations in TMEM216, which encodes an uncharacterized tetraspan transmembrane protein. Individuals with CORS2 frequently had nephronophthisis and polydactyly, and two affected individuals conformed to the oro-facio-digital type VI phenotype, whereas skeletal dysplasia was common in fetuses affected by MKS. A single G218T mutation (R73L in the protein) was identified in all cases of Ashkenazi Jewish descent (n=10). TMEM216 localized to the base of primary cilia, and loss of TMEM216 in mutant fibroblasts or after knockdown caused defective ciliogenesis and centrosomal docking, with concomitant hyperactivation of RhoA and Dishevelled. TMEM216 formed a complex with Meckelin, which is encoded by a gene also mutated in JSRDs and MKS. Disruption of tmem216 expression in zebrafish caused gastrulation defects similar to those in other ciliary morphants. These data implicate a new family of proteins in the ciliopathies and further support allelism between ciliopathy disorders.

NEFRONOFTISI

Table 1. Genetics and frequency of extrarenal associations in NPHP

Devenueton	NPHP Type										
Parameter	1	2	3	4	5	6					
Mutated gene	NPHP1	NPHP2	NPHP3	NPHP4	NPHP5	NPHP6	AHI1				
Encoded protein	Nephrocystin-1	Nephrocystin-2	Nephrocystin-3	Nephrocystin-4	Nephrocystin-5	Nephrocystin-6	Jouberin				
Frequency of gene mutation (%) ^o	20	1	1	2	2	1	<2				
Kidney cysts (%)	100	100	100	100	100	100	?				
Retinal degeneration (%)	7	10	≈40	15	100	100	?				
Cerebellar vermis aplasia (%)	≈1	_	_	_	_	≈90	100				
Oculomotor apraxia (Cogan) (%)	1	_	_	<1	_	_	?				

^aNPHP, nephronophthisis.

Coinvolgimento retinico Aplasia verme cerebellare Fibrosi epatica Anomalie scheletriche Situs inversus S di Senior-Loken
S di Joubert
S di Meckel-Gruber
S di Bardet-Biedl
s Alstrom, Eliis Van Creveld,
Jeune

^bPercentage of 976 patients from different families with NPHP-associated disorders as evaluated in the authors' worldwide cohort. Different frequencies have been reported by Saunier *et al.* (157).

CASISTICA NEFRONOFTISI UO NEFROLOGIA E REUMATOLOGIA PEDIATRICA CON DIALISI AOU G MARTINO MESSINA

	Paz	Anno di nascita	Età diagnosi	Quadro clinico esordio	Quadro clinico attuale	
1	M.R.	1977	15aa	IRC+cecità (Leber)	Tx	
2	S.V.	1989	10aa	IRC	Tx	
3	K.K.	1990	10aa	IRC	Tx	
4	F.F	1987	13aa	13aa IRC+Cerebropatia (Joubert)		
5	S.D.	1997	8aa	IRC+Cerebropatia (Joubert)	Tx	
6	S.A.	1998	11 aa	IRC+Cerebropatia (Joubert)	Tx	
7	C.M.	2000	10aa	IRC+Cerebropatia (Joubert)	Tx	
8	E.G.	2000	12aa	IRC	Tx	
9	E.C.	2003	9aa	Poliuria e Ipertensione arteriosa	IRC	

THE LANCET

10 May 1986, Pages 1077-1081

Epidemiology

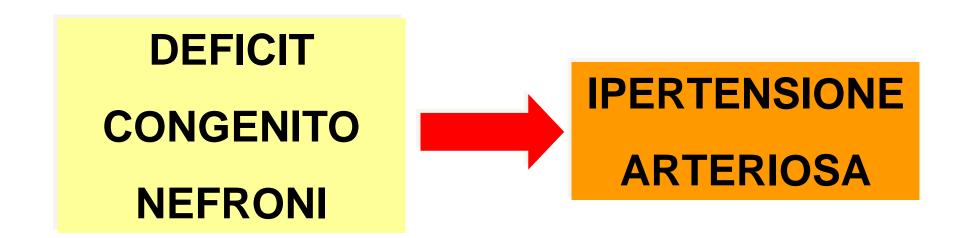
INFANT MORTALITY, CHILDHOOD NUTRITION, AND ISCHAEMIC HEART DISEASE IN ENGLAND AND WALES

D. J. P. Barker and C. Osmond

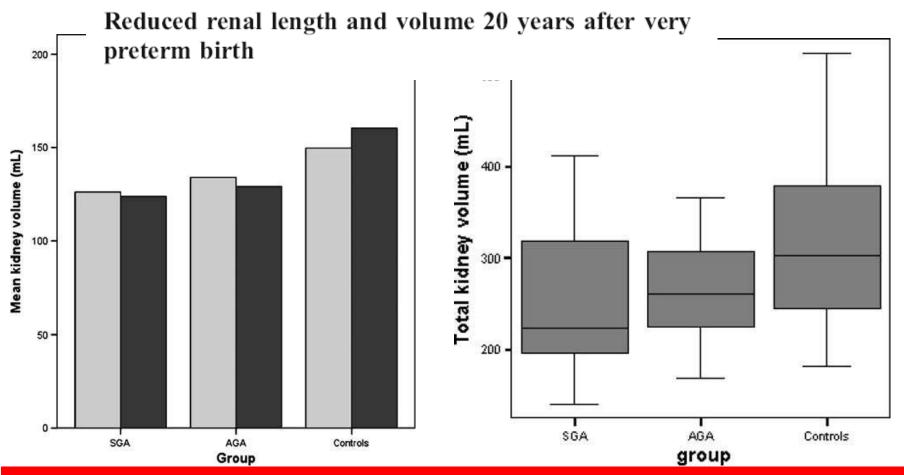
MRC Environmental Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton SO9 4XY, United Kingdom

le aree geografiche a più alto tasso di mortalità infantile in Gran Bretagna agli inizi del 1900 coincidevano e quelle a più alta incidenza di morte per cardiopatia ischemica e di coronaropatia nell' età adulta

bambini con peso alla nascita <2,5 Kg presentavano quasi il doppio delle probabilità di morire di malattie coronariche rispetto a quelli con peso alla nascita >3,5 Kg


IPOTESI DI BARKER

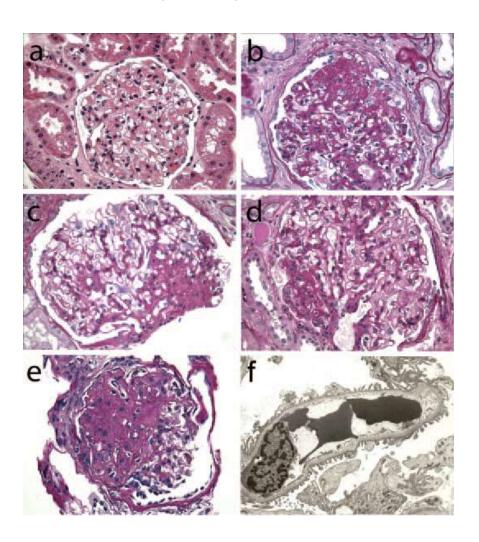
Am J Hypertens. 1988 Oct;1(4 Pt 1):335-47.


Glomeruli and blood pressure. Less of one, more the other?

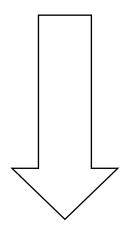
<u>Brenner BM, Garcia DL, Anderson S.</u>

Renal Division, Brigham and Women's Hospital, Boston, MA 02115.

ORIGINAL ARTICLE


E' ormai documentata la stretta correlazione tra il numero di nefroni presenti alla nascita e il peso neonatale.

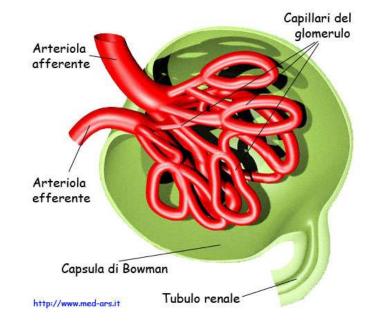
Un peso alla nascita <3° percentile si associa a una riduzione di circa il 35% del numero di nefroni alla nascita.


Very Low Birth Weight is a Risk Factor for Secondary Focal Segmental Glomerulosclerosis

Jeffrey B. Hodgin,* Majid Rasoulpour,[†] Glen S. Markowitz,* and Vivette D. D'Agati*
*Department of Pathology, Columbia University, College of Physicians & Surgeons, New York, New York; †Division of Nephrology, Connecticut Children's Medical Center, Hartford, Connecticut

Clin J Am Soc Nephrol 4: 71-76, 2009.

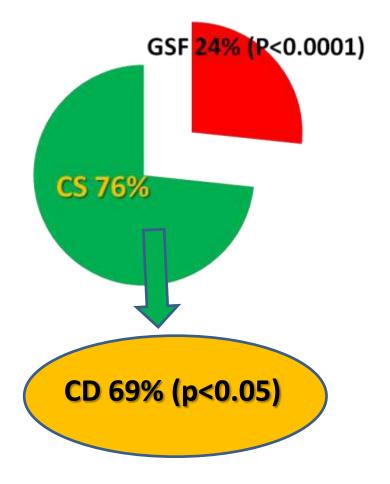
Basso peso alla nascita


GLOMERULOSCLEROSI FOCALE SEGMENTALE

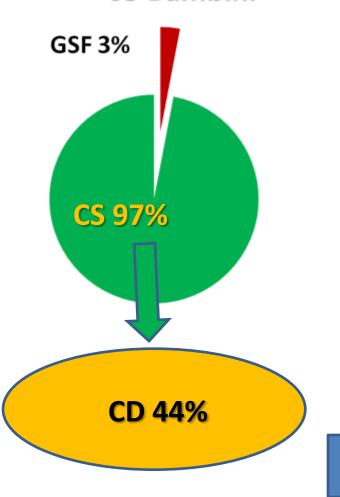
Nefrina ???

Basso Peso alla Nascita

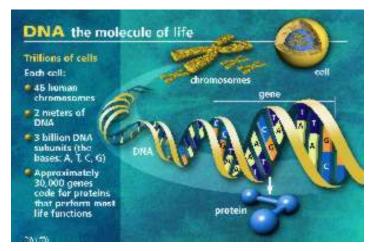
Ipertensione ed iperfiltrazione glomerulare

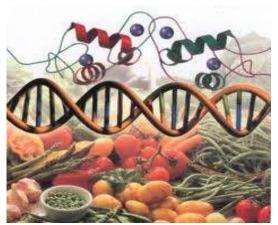

Ipertensione sistemica ed albuminuria

Glomerulosclerosi


SGA e/o BASSO PN E

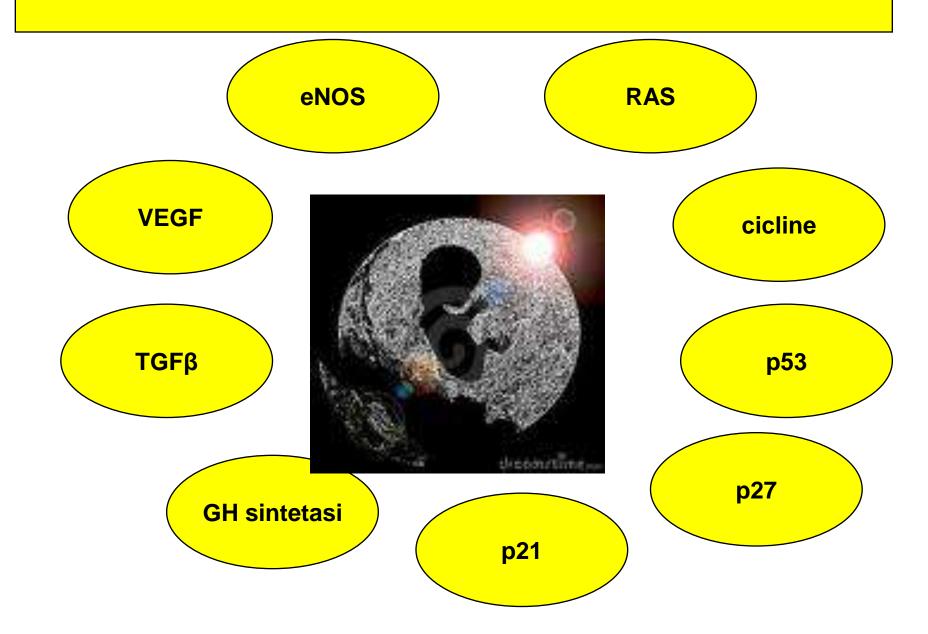
TIPO E DECORSO DELLA SN

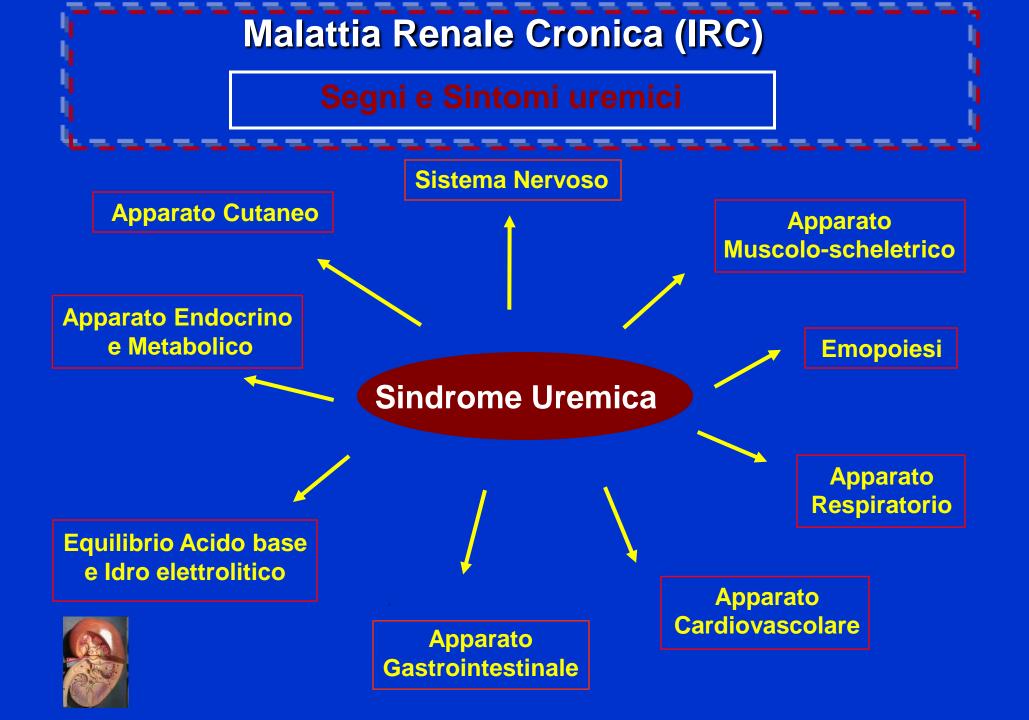

SGA e/o basso PN 17 Bambini

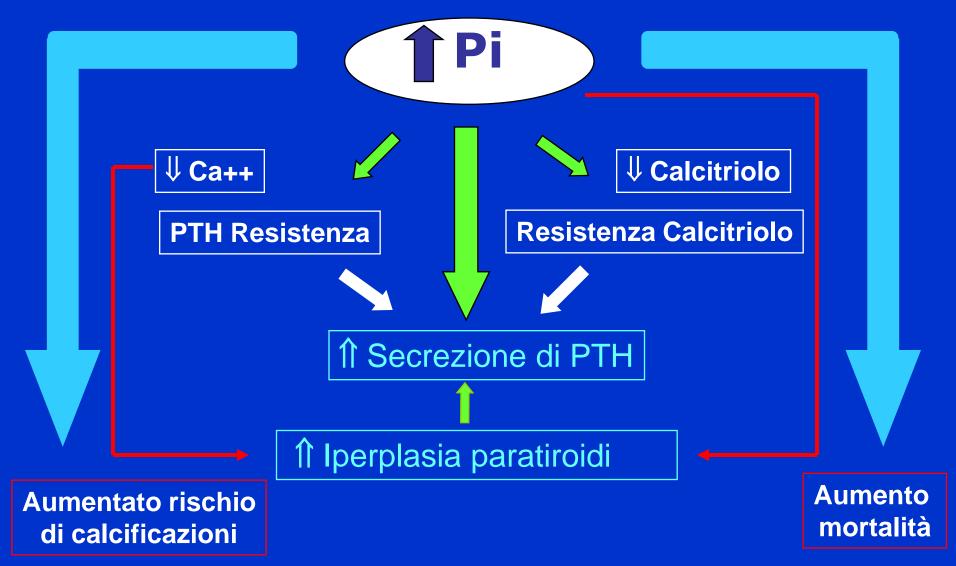


AGA e/o PN normale 65 Bambini

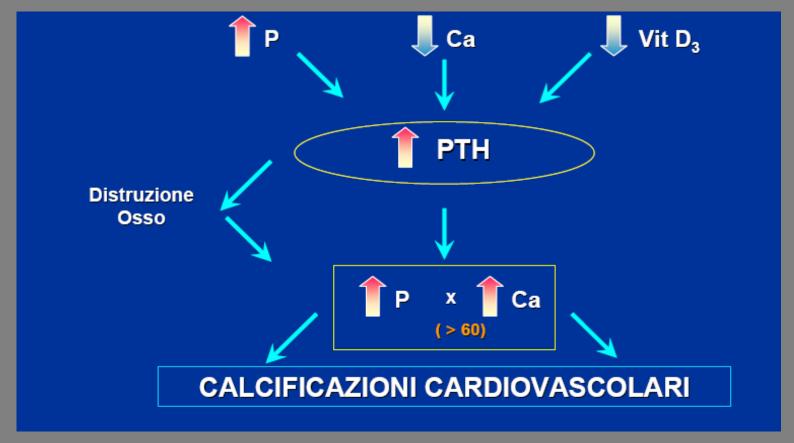
Fede C.: Ped.Neph., In corso di stampa



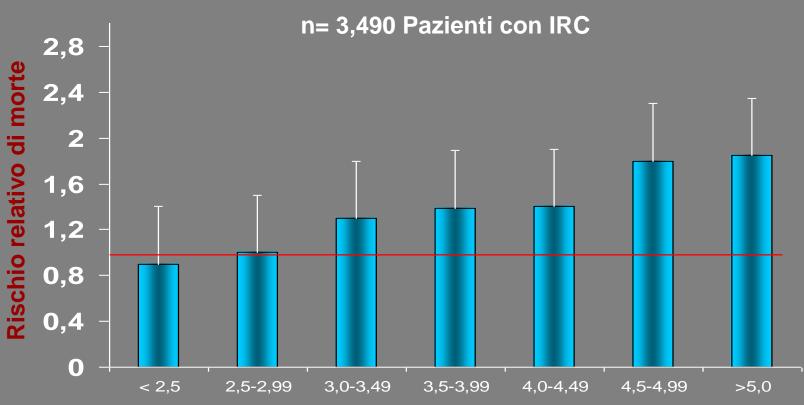

Polimorfismi, delezioni, mutazioni etc etc......


Rallentamento della progressione del danno renale

- ✓ Trattamento della malattia di base
- ✓ Riduzione della pressione arteriosa con farmaci attivi sulla pressione glomerulare
- Riduzione della proteinuria
- ✓ Riduzione dell'apporto di proteine (*)
- ✓ Correzione della dislipidemia
- ✓ Riduzione del peso corporeo
- ✓ Correzione precoce dell'anemia
- (*) indicata solo nelle forme proteinuriche



Conseguenze dell'iperfosfatemia

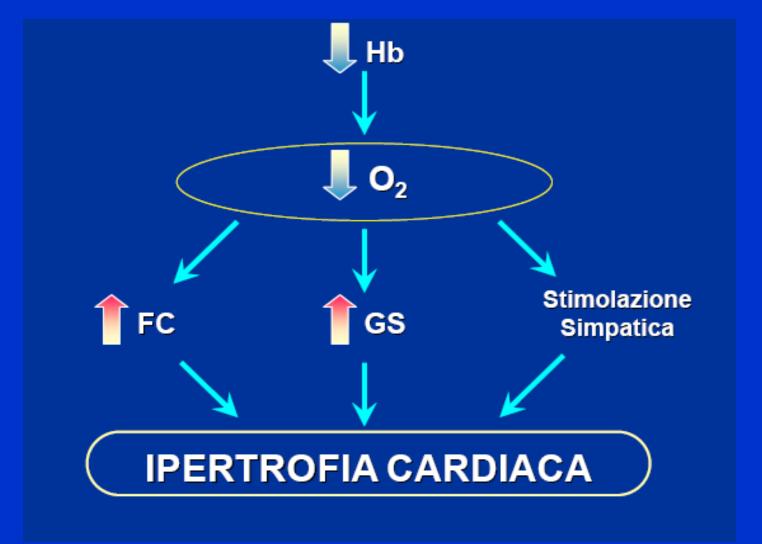


Colecalciferolo

Rischio relativo di morte per livelli di fosforo nei pazienti con MRC

Fosforo serico (mg/dl)

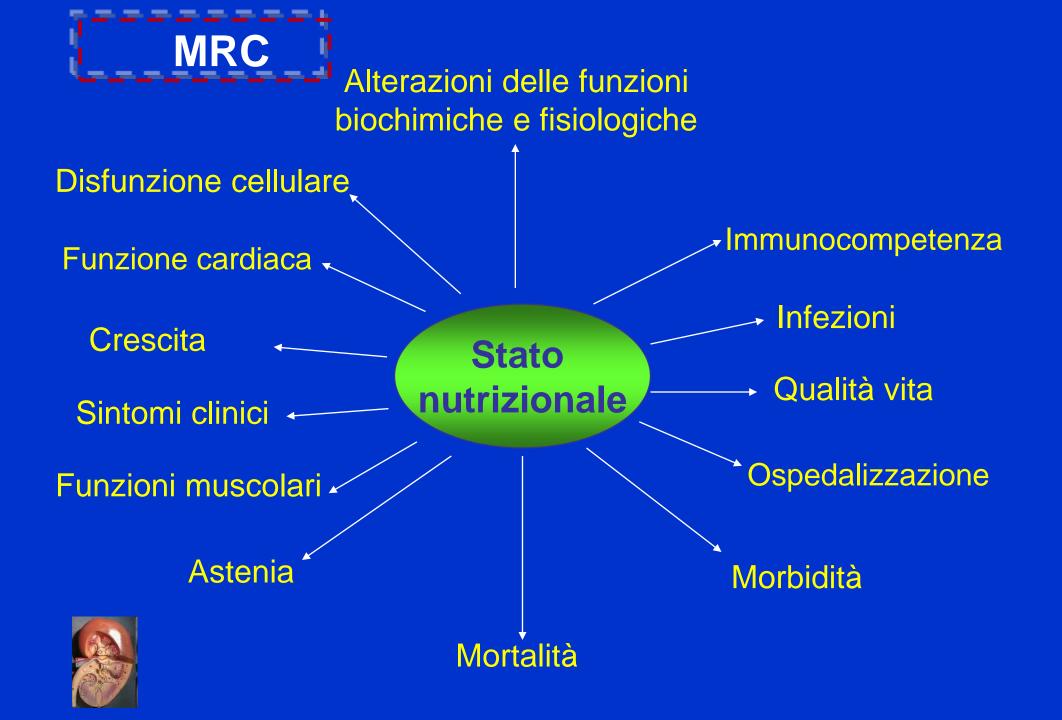
Conseguenze dell'osteodistrofia renale

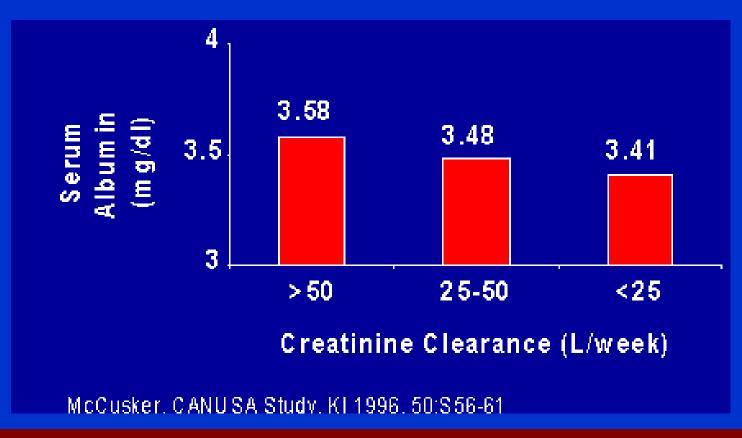

- Normocitica
- Normocromica

Cause: deficit di sintesi renale di EPO, ridotta emivita GR, emolisi

- Diminuita massa eritrocitaria
- Diminuita stimolazione midollare
- Diminuita risposta midollare

Anemia




Malattia Renale Cronica (MRC)

Terapia dietetica

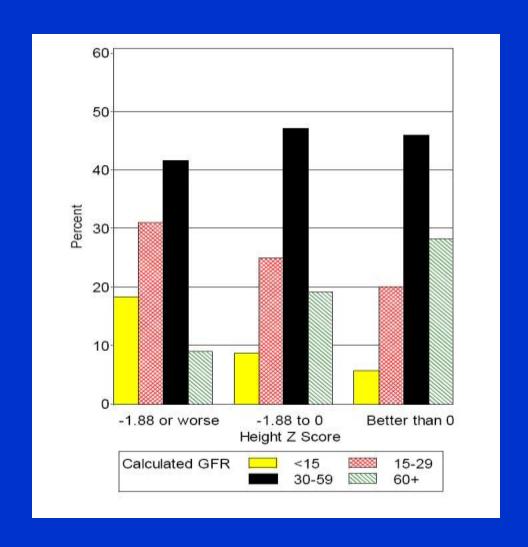
- Restrizione proteica
- -Fabbisogno minimo per l'età
 - proteine ad elevato valore biologico (ricche di aminoacidi essenziali)
- Apporto calorico
 - 100% RDA (peso ideale, età, sesso)
- Ottimizzazione dell'apporto di acqua e sali
 - Bilancio idrico Acidosi
 - Na⁺ Ca/P
 - K+

Declino della funzione renale e malnutrizione

680 pz da 14 centri USA e Canada che hanno iniziato la PD nel 1990-92

Compromissione della crescita ponderale nell'IRC____nell'IRC____

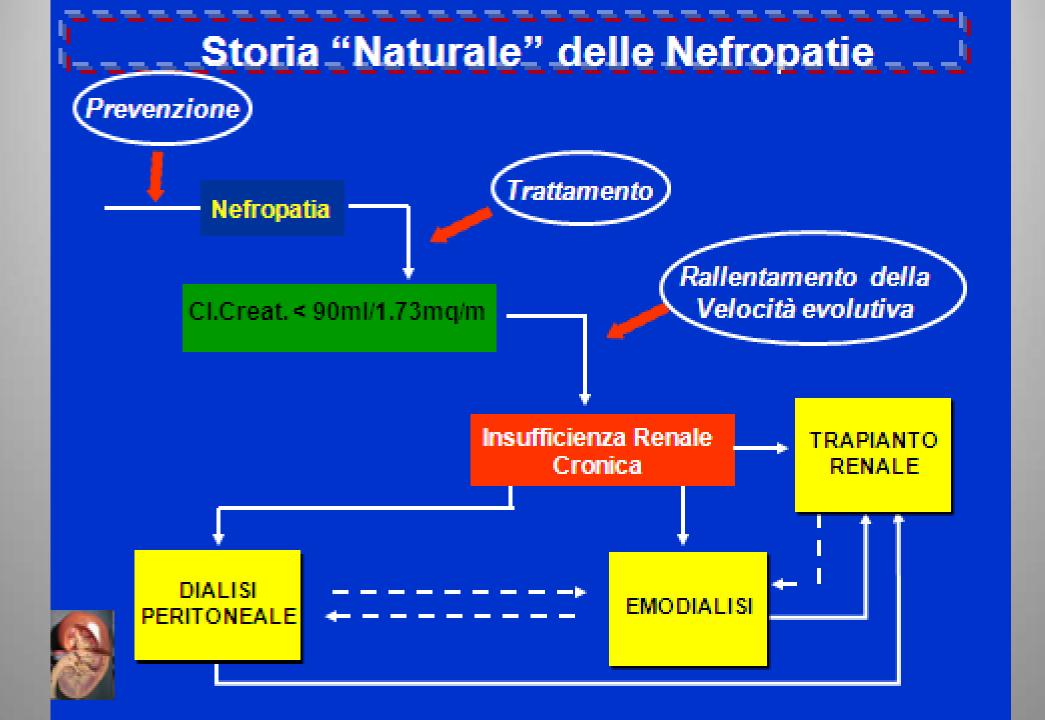
			Age at CKD Registration							
	All Patients		0-1 year		2-5 years		6-12 years		>12 years	
	N	%	N	%	N	%	N	%	N	%
Total	6918	100.0	1390	100.0	1096	100.0	2241	100.0	2191	100.0
Weight SDS										
-1.88 or worse	1894	27.4	808	58.1	312	28.5	470	21.0	304	13.9
-1.88 to 0	2843	41.1	476	34.2	550	50.2	997	44.5	820	37.4
Better than 0	2181	31.5	106	7.6	234	21.4	774	34.5	1067	48.7



Compromissione della crescita staturale nell'IRC

			Age at CKD Registration							
	All Patients		0-1 year		2-5 years		6-12 years		>12 years	
	N	%	N	%	N	%	N	%	N	%
Total	6907	100.0	1349	100.0	1087	100.0	2238	100.0	2233	100.0
Height SDS										
-1.88 or worse	2455	35.5	786	58.3	448	41.2	727	32.5	494	22.1
-1.88 to 0	3233	46.8	457	33.9	524	48.2	1110	49.6	1142	51.1
Better than 0	1219	17.6	106	7.9	115	10.6	401	17.9	597	26.7

Influenza del grado di IRC sulla crescita staturale



Confronto crescita staturale e funzione renale in b.ni >1 anno in IRC sottoposti a trattamento con GH vs b.ni >1 anno in IRC non trattati

12 MONTH GROWTH DATA AND RENAL FUNCTION DATA EXCLUDING PATIENTS AGE 0-1 YEAR

		rhGH (n=189		All Untreated Patient (n=2279)				
	Mean	SE	Median	Mean	SE	Median		
Height SDS								
Baseline	-2.05	0.08	-2.00	-1.09	0.03	-0.95		
12 Month	-1.74	0.08	-1.64	-1.17	0.03	-1.00		
Change from baseline	0.32	0.04	0.28	-0.08	0.02	-0.05		
Serum Creatinine								
Baseline	2.27	0.09	1.90	2.07	0.03	1.70		
12 Month	2.83	0.13	2.30	2.53	0.04	2.00		
Change from baseline	0.56	0.08	0.30	0.47	0.03	0.20		
Calculated GFR								
Baseline	36.42	1.18	35.10	44.80	0.38	44.61		
12 Month	33.54	1.33	29.73	43.18	0.50	40.18		
Change from baseline	-2.88	0.76	-2.37	-1.62	0.36	-2.64		

M.R.C. e identità psicocorporea

La patologia renale cronica, la specificità del trattamento dialitico ed il trapianto d'organo incidono profondamente sulla rappresentazione dell'identità soggettiva, comportando difficoltà emotive, relazionali e adattative.

Spesso la fistola artero-venosa viene simbolizza quale nucleo conflittuale della propria condizione di malattia e di sofferenza psicofisica.

Nei disegni effettuati da due nostri pazienti, un ragazzo in dialisi da 4 anni ed una ragazza che ha effettuato il trapianto da 12 anni, l'omissione del braccio coincide con l'arto in cui è stata impiantata la fistola

L'approccio multidisciplinare

L'esperienza di malattia si inscrive spesso in modo indissolubile nel vissuto e nell'identità soggettiva di questi pazienti. E' di fondamentale importanza pertanto una presa in carico globale del paziente nefropatico che consenta di garantire una condizione di benessere non solo fisico ma anche psichico, per una qualità di vita che non sia soltanto un

"SOPRAVVIVERE"